

Pz12X (Lead-Free)

NBT-BT Piezoceramic Material

Description

Pz12X is a lead-free piezoceramic formulation based on the sodium bismuth titanate-barium titanate system (NBT-BT). It is a variant of our Pz12 formulation, featuring a greater mechanical quality factor and thickness electromechanical coupling at the expense of temperature capability.

Key Features and Benefits

Lead-Free Product

Candidate for Replacing Hard-Doped PZT

Ideal Applications

- Underwater Transmitters
- Therapeutic Medical Ultrasound
- Ultrasonic Cleaning, Cutting and Welding

Property	Symbol	Unit	Value
Relative Free Dielectric Constant (1 kHz)	Κ ^σ ₃₃	-	813
Dielectric Dissipation Factor (1 kHz)	tan δ	-	0.032
Depoling Temperature	$T_{\rm d}$	°C	85
Recommended Operating Range	T<	°C	60
Density	ρ	g/cm³	5.78
Mechanical Quality Factors	Q_{mp}	-	205
	Q_{mt}	-	195
Coupling Coefficients	k_{p}	-	0.32
	$k_{\rm t}$	-	0.47
Piezoelectric Charge Coefficient (Displacement Coefficient)	d ₃₃	pC/N	152
Frequency Constants	$N_{\rm p}$	Hz·m	2620
	$N_{\rm t}$	Hz·m	2370
Acoustic Impedance	$Z_{\rm a}$	MRayl	30